|
Direction finding (DF), or radio direction finding (RDF), is the measurement of the direction from which a received signal was transmitted. This can refer to radio or other forms of wireless communication, including radar signals detection and monitoring (ELINT/ESM). By combining the direction information from two or more suitably spaced receivers (or a single mobile receiver), the source of a transmission may be located via triangulation. Radio direction finding is used in the navigation of ships and aircraft, to locate emergency transmitters for search and rescue, for tracking wildlife, and to locate illegal or interfering transmitters. RDF was important in combating German threats during both the WW-II Battle of Britain and the long running Battle of the Atlantic. In the former, the Air Ministry also used RDF to locate its own fighter groups and vector them to detected Germain raids. RDF systems can be used with any radio source, although very long wavelengths (low frequencies) require very large antennas, and are generally used only on ground-based systems. These wavelengths are nevertheless used for marine radio navigation as they can travel very long distances "over the horizon", which is valuable for ships when the line-of-sight may be only a few tens of kilometres. For aerial use, where the horizon may extend to hundreds of kilometres, higher frequencies can be used, allowing the use of much smaller antennas. An automatic direction finder, which could be tuned to radio beacons called non-directional beacons or commercial AM radio broadcasters, was until recently, a feature of most aircraft, but is now being phased out For the military, RDF is a key tool of signals intelligence. The ability to locate the position of an enemy transmitter has been invaluable since World War I, and played a key role in World War II's Battle of the Atlantic. It is estimated that the UK's advanced "huff-duff" systems were directly or indirectly responsible for 24% of all U-Boats sunk during the war. Modern systems often used phased array antennas to allow rapid beamforming for highly accurate results, and are part of a larger electronic warfare suite. Radio direction finders have evolved, following the development of new electronics. Early systems used mechanically rotated antennas that compared signal strengths, and several electronic versions of the same concept followed. Modern systems use the comparison of phase or doppler techniques which are generally simpler to automate. Early British radar sets were referred to as RDF, which is often stated was a deception. In fact, the Chain Home systems used large RDF receivers to determine directions. Later radar systems generally used a single antenna for broadcast and reception, and determined direction from the direction the antenna was facing. ==Antennas== Direction finding requires an antenna that is directional (more sensitive in certain directions than in others). Many antenna designs exhibit this property. For example, a Yagi antenna has quite pronounced directionality, so the source of a transmission can be determined simply by pointing it in the direction where the maximum signal level is obtained. However, to establish direction to great accuracy requires more sophisticated technique. A simple form of directional antenna is the loop aerial. This consists of an open loop of wire on an insulating former, or a metal ring that forms the antenna elements itself, where the diameter of the loop is a tenth of a wavelength or smaller at the target frequency. Such an antenna will be ''least'' sensitive to signals that are normal to its face and ''most'' responsive to those meeting edge-on. This is caused by the phase output of the transmitting beacon. The phase changing phase causes a difference between the voltages induced on either side of the loop at any instant. Turning the loop face on will not induce any current flow. Simply turning the antenna to obtain minimum signal will establish two possible directions from which the signal could be emanating. The NULL is used, as small angular deflections of the loop aerial near its null positions produce larger changes in current than similar angular changes near the loops max positions. For this reason, a null position of the loop aerial is used. To resolve the two direction possibilities, a sense antenna is used, the sense aerial has no directional properties but has the same sensitivity as the loop aerial. By adding the steady signal from the sense aerial to the alternating signal from the loop signal as it rotates, there is now only one position as the loop rotates 360° at which there is zero current. This acts as a phase ref point, allowing the correct null point to be identified, thus removing the 180° ambiguity. A dipole antenna exhibits similar properties, and is the basis for the Yagi antenna, which is familiar as the common VHF or UHF television aerial. For much higher frequencies still, parabolic antennas can be used, which are highly directional, focusing received signals from a very narrow angle to a receiving element at the centre. More sophisticated techniques such as phased arrays are generally used for highly accurate direction finding systems called goniometers such as are used in signals intelligence (SIGINT). A helicopter based DF system was designed by ESL Incorporated for the U.S. Government as early as 1972. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Direction finding」の詳細全文を読む スポンサード リンク
|